
USB motion controllers programming library – Documentation © AUDIOMS AUTOMATIKA DOO

Programming Library
For Audioms Automatika doo USB motion controllers

www.audiohms.com

http://www.audiohms.com/

USB motion controllers programming library – Documentation © AUDIOMS AUTOMATIKA DOO

TABLE OF CONTENTS

USB Motion Controllers Library programming .. 3

Introduction ... 3

Supported motion controllers .. 3

Using the library .. 3

Opening and initializing device .. 3

Application concept example ... 4

Working modes (states) .. 5

Buffered motion programming ... 5

Sequences .. 6

Example CNC application ... 6

USB-MC API functions reference .. 7

Hardware communication functions .. 7

BOOL usbmc_Open(); ... 7

void usbmc_Close(); .. 7

BOOL usbmc_Init(USBMC_Config *ucfg, USBMC_IOCfg *pcfg); 8

BOOL usbmc_GetStatus(USBMC_Status *stat); ... 8

void usbmc_Disconnect(); ... 8

BOOL usbmc_CmdStop(BYTE flags=0); ... 8

BOOL usbmc_CmdSetOutputs(WORD out_bits, WORD flags=0, WORD zmask=0); ... 9

BOOL usbmc_CmdJogOn(int axis, BOOL dir, DWORD speed); 9

BOOL usbmc_CmdJogOff(int axis);... 10

BOOL usbmc_CmdSpindle(BOOL on, WORD pwm_duty=0, DWORD speed=0); 10

BOOL usbmc_CmdHomeAxis(BYTE axis); ... 10

BOOL usbmc_CmdProbe(double start[6], double end[6], double feedrate); 11

BOOL usbmc_GetProbePos(double hit_pos[6]); ... 11

int usbmc_GetProbeResult(); .. 12

BOOL usbmc_IsProbing(); ... 12

BOOL usbmc_IsHoming(); ... 12

void usbmc_PosResync(); ... 12

BOOL usbmc_SetupMPG(BYTE axis, double step, DWORD maxvel, BOOL enable);12

const char *usbmc_GetFirmwareVersion(); ... 13

BOOL usbmc_BufAdd(USBMC_BufSeg *p); ... 13

int usbmc_BufFreeCnt(); .. 13

void usbmc_BufClear(); ... 14

BOOL usbmc_BufEmpty(); .. 14

BOOL usbmc_CmdPurge(BOOL clear=FALSE); ... 14

int usbmc_BufUpdate(int max_cnt=75); ... 14

void usbmc_SetBuffSize(int moves); ... 14

USB-MC structures ... 15

struct USBMC_AxisCfg .. 15

struct USBMC_SpindleConfig .. 15

struct USBMC_Config .. 15

struct USBMC_BufSeg .. 16

struct USBMC_Signal .. 16

struct USBMC_IOCfg ... 16

struct USBMC_Status .. 17

USB-MC enumerations ... 17

Audioms Automatika doo

Kragujevac, Serbia, Europe

web: www.audiohms.com

e-mail: office@audiohms.com

Page 3 of 19

USB motion controllers programming library – Documentation, August 2024

USB Motion Controllers Programming Library

Introduction

Audioms Automatika doo USB motion controllers use USB for connection with computer.
WinUSB is used as underlying base but programmer does not need to know anything
about USB standard since all low level communication is handled by the library itself and
hidden from the user.

Just as information for curious ones, multiple endpoints are used for simultaneous full
duplex communicating lines over USB bus. Bulk transfer is used for motion buffer data and
high priority interrupt transfer mode is used for other commands to the controller.

Supported motion controllers

USB programming library supports following line of Audioms Automatika doo motion
controllers:

 ISO-USB-BOX motion controller,

 USB-MC-INT motion controller and

 USB-MC motion controller.

Using the library

To use USB-MC library, application should include header file usbmclib.h and also add
usbmc.lib to the project for linking. Header file contains all functions and structures
declarations used by the library. Dynamic link library file usbmc.dll contains library code
and should be placed in the folder where executable for the application is located.

Opening and initializing device

When USB-MC motion controller is powered on by connecting it to the computer it will
enter safe mode where all outputs are in hiZ (high impedance) mode. Status LED blinks
slowly.

Application should use usbmc_Open() function to open connection to USB-MC motion
controller.
Next, to initialize controller, function usbmc_Init() should be called. This function is used
to set almost all configuration parameters for the controller and i/o pin configuration.
After successful initialization USB-MC controller will enter on-line mode. This is normal
operating mode where digital outputs are enabled, as well as all other functions.
Status LED is continuously lit.

While in on-line mode, USB-MC controller sends status packet to the computer every
50ms. This concept serves as a "watch dog" thus making sure that connection is present
and that both sides (controller and software) are alive and well. Application should
periodically check if a status packet is available by calling usbmc_GetStatus(). This can
be done in a timer callback or in a thread loop that serves for all other maintenance.

http://www.audiohms.com/
mailto:office@audiohms.com

Audioms Automatika doo

Kragujevac, Serbia, Europe

web: www.audiohms.com

e-mail: office@audiohms.com

Page 4 of 19

USB motion controllers programming library – Documentation, August 2024

Application concept example

After initializing the USB motion controller application should do continual monitoring of the
controller status (axis positions, input states etc.) and do its processing, motion generation
etc.
One way to organize application is to use timer function for continuous background
processing. For example, Windows API function SetTimer() can be used to initialize timer
callback function that will be called every 25 ms to do its processing:

tid = SetTimer(hwnd, 0, 25, (TIMERPROC)UpdateProc);

VOID CALLBACK UpdateProc(HWND hwnd, UINT uMsg, UINT_PTR idEvent, DWORD
dwTime)
{

if(online && usbmc_GetStatus(&mcstat)){ //if there is a new status packet
//available

 //examine new status packet and do appropriate processing

}

//Do other jobs like motion generation or setting output states as needed

if(online && update_out){
 //Set all outputs

usbmc_CmdSetOutputs(dig_outputs, mc_flags, zero_mask);
 zero_mask = 0;
 update_out = 0;
}

}

Using windows timer is the easy way, but it comes with some caveats. If the computer is at
heavy load some timer messages (and timer callbacks) may not be issued which can lead
to skipping and stuttering. Also, as timer callback is executed in the same thread as UI, UI
drawing and user operations may delay critical events from execution.

For most reliable application a multi-threaded concept should be used. This may not be
too much different from described example at first glance. Instead of SetTimer(), windows
function CreateWaitableTimer() can be used to create timer object that will periodically
set an event. Work thread loop would wait for the event using WaitForSingleObject() and
when event gets signaled, it can do its status check and processing.

Off course, any multi-threaded application requires careful synchronization between
threads.

USB programming library is thread safe in a way that it will not allow two API function calls
that call to hardware via USB to be executed at the same time. This calls will be
synchronized so that while first thread is executing one API function, other threads will
wait.

http://www.audiohms.com/
mailto:office@audiohms.com

Audioms Automatika doo

Kragujevac, Serbia, Europe

web: www.audiohms.com

e-mail: office@audiohms.com

Page 5 of 19

USB motion controllers programming library – Documentation, August 2024

Working modes (states)

Status packet has member field state that indicates current state of the controller. It may
return one of the following values.

 enum Mode{
 M_IDLE=0, //connected, on-line and no operation in progress
 M_JOG, //jogging one or more axis
 M_SEGM, //g-code buffered motion in progress
 M_HOLD, //g-code buffer has received data but motion not yet started
 M_ESTOP, //ESTOP signaled by the ESTOP input, limit switches etc.
 M_SAFE, //controller is in safe, HiZ outputs mode
 M_RDOWN //after probe hit there is a ramp down for all axes
 };

The Audioms Automatika doo USB motion controllers are designed so that it has two main
motion generation mechanisms that are mutually exclusive. These are:

 Jog mode and

 Buffered motion generation modes.

Jogging is initiated by application using appropriate API functions usbmc_CmdJogOn() /
usbmc_JogOff() and then is completely performed by hardware. Controller generates
acceleration ramp in real-time according to the previously setup parameters and generates
Step&Dir signals. So, jog mode is immediate and fast thus it is mainly used for manual
control of the machine. In jog mode every axis is independent and no coordinated motion
of multiple axes is possible.

On the other hand, for moving along some arbitrary path we need to coordinate motion of
two or more axes. This is where buffered motion mode is used. In this case the application
is generating position data for all axes and sends it to controller for execution. Motion
planning task and generating axis positions in time may be complex job but it is perfectly
well suited to the computer.

USB-MC controller expects position data for all axes in 1ms time intervals. When
generating Step&Dir signals from this data USB-MC motion controller uses interpolation to
connect this 1ms time points (segments) into smooth trajectory.
So application prepares data, and this data is sent to the controller one buffer at a time.
USB-MC controller has internal buffer memory for 1000 6-coordinate points (1 second of
motion practically). While working in this mode, application can check current motion buffer
state and decide when to send more data so that controller maintains continuous motion
generation without starving out of data.
In practice, application does not really need to do this controller hardware buffer checks
and buffer sending since it is performed by the library.

Buffered motion programming

Application can use usbmc_BufAdd() function to add 6-coordinate points to the motion
buffer. Before adding more data it should check if there is a free space in the buffer by
calling usbmc_BufFreeCnt(). This motion data is added to the buffer maintained by the

http://www.audiohms.com/
mailto:office@audiohms.com

Audioms Automatika doo

Kragujevac, Serbia, Europe

web: www.audiohms.com

e-mail: office@audiohms.com

Page 6 of 19

USB motion controllers programming library – Documentation, August 2024

library and to transfer this data to the USB-MC controller, function usbmc_BufUpdate()
should be called regularly. This library function internally checks buffer state of the
controller and library buffer and performs buffered data transfers when needed.
As soon as USB-MC controller receives any motion data it will enter M_HOLD mode,
waiting for more data. After the controller receives enough data (500ms), it enters M_SEG
mode and starts to execute buffer data and to generate Step&Dir signals.
As long as new data is added to the buffer and buffer update is called regularly,
uninterrupted smooth motion will continue.

In case that motion generated is short and it ends in less than 500ms, library function
usbmc_CmdPurge() can be called to release for execution all data in the controller buffer.
After all data is consumed controller will revert to M_IDLE mode.

Example addition to the timer loop:

AppMotionGeneration(); //Generate motion data and call usbmc_BufAdd()

 usbmc_BufUpdate(); //Regularly send current data in the buffer to the
controller

//If move was short and finished before enough data is generated to auto-trigger
//buffer execution start, then purge all that is currently left in the buffer

 if(mcstat.state==M_HOLD && !GMOVE_BUSY){
 usbmc_CmdPurge(0);
 }

Sequences

USB-MC supports sequences that may consist of multiple moves like homing and probing.
Sequences are performed pretty much autonomously by the controller and/or library and
application can monitor current progress by examining status packet.

Homing for any axis is initiated by function usbmc_CmdHomeAxis() Multiple axis can be
homed at the same time.
Probing is performed by function usbmc_CmdProbe() function.

Application must make sure that no sequence or other operation is currently active
before attempting to initiate any new sequence.

Example CNC application

Source code for the functional example CNC application that is based on this library is
provided for demonstration (Figure 1). The application uses most of the library functions
including opening and initializing motion controller, jogging, buffered motion generation,
homing, probing etc.

http://www.audiohms.com/
mailto:office@audiohms.com

Audioms Automatika doo

Kragujevac, Serbia, Europe

web: www.audiohms.com

e-mail: office@audiohms.com

Page 7 of 19

USB motion controllers programming library – Documentation, August 2024

Figure 1 Example CNC application

C++ source code is provided as Microsoft Visual Studio 2008 project. Any later version of
Visual Studio should be able to open and compile the project. The application is based on
MFC framework, so MFC should be installed in the Visual Studio.

USB-MC API functions reference

Hardware communication functions

BOOL usbmc_Open();

Opens USB device. Must be called before calling any other API function. Only one
application can open controller at one time.

Returns TRUE if motion controller is connected and opened successfully.
In case of an error returns FALSE.

void usbmc_Close();

Close USB device when finished using it.

http://www.audiohms.com/
mailto:office@audiohms.com

Audioms Automatika doo

Kragujevac, Serbia, Europe

web: www.audiohms.com

e-mail: office@audiohms.com

Page 8 of 19

USB motion controllers programming library – Documentation, August 2024

BOOL usbmc_Init(USBMC_Config *ucfg, USBMC_IOCfg *pcfg);

Initialization of the motion controller parameters. Must be called after opening the
device to configure various parameters and enter on-line (normal) working mode.
After the device is initialized, it enters on-line mode where digital outputs are enabled
and status packet is sent every 50 ms to the application.

Parameters:
*ucfg, pointer to USBMC_Config structure, to config various controller parameters
*pcfg, pointer to USBMC_IOCfg structure, to config input and output pins

If initialization is successful function returns TRUE. Otherwise it returns FALSE.

BOOL usbmc_GetStatus(USBMC_Status *stat);

When new status packet is available this function copies status structure to the
supplied pointer and returns TRUE.
If new status is not available at this time function returns FALSE.

USBMC_Status *stat - Status structure contains current axis positions, states for all
digital inputs, analog input etc.

Application must periodically check if new status packet is available by calling this
function. Status packet is sent every 50ms by the controller and ensuring that packets
are read in a timely manner ensures that there is a reliable connection.
If application stalls too much reading for status packets the motion controller would
perceive this as a problem on the computer side and enter safe hiZ mode for outputs,
also entering off-line mode.
Application should also do its checking so if no status packet is available for some time
(for example 500ms) application should interpret this as a problem on the motion
controller side and signal error to the user, close connection or activate ESTOP mode.

In either case, to re-establish on-line normal working mode, function usbmc_Init()
should be called.

void usbmc_Disconnect();

End on-line mode of the controller. Outputs are placed in hiZ mode, status packets are
not sent any more.
To re-establish on-line normal working mode, function usbmc_Init should be called.

BOOL usbmc_CmdStop(BYTE flags=0);

http://www.audiohms.com/
mailto:office@audiohms.com

Audioms Automatika doo

Kragujevac, Serbia, Europe

web: www.audiohms.com

e-mail: office@audiohms.com

Page 9 of 19

USB motion controllers programming library – Documentation, August 2024

Calling this function will stop all active operations (jog, g-code segment move, home,
probe sequences etc.). Motion buffer is cleared so any data that is present in the buffer
will be lost.

In addition to this, one or more of the following flags can be used:

 enum StopModes{
 STOP_ESTOP = 1, //activate ESTOP mode
 STOP_DISCONNECT = 2 //terminate on-line mode
 };

Returns TRUE if operation was successful.

BOOL usbmc_CmdSetOutputs(WORD out_bits, WORD flags=0, WORD zmask=0);

Set states for all digital outputs. Also additional functions are available, it is done in this
way because it is more efficient to do it all in one call since data sent is very small in
size.

WORD out_bits – 16-bit bit mask for out states, bit0= out1, bit1= out2 etc.

WORD flags – bitwise OR of one or more of the following:

 enum RuntimeFlags{
 SOFT_LIMITS = 1, //activate soft limits
 SHUTTLE_MODE = 2, //shuttle mode is not currently supported, but
 //using this flag will activate hardware feedhold

};

WORD zmask – bit mask for axes that should be set to zero. Bit0 – X axis, bit1 – Y
axis, etc. Axis position is set to zero for example when referencing is asked by user but
there is no home switch configured for the axis.

Returns TRUE if operation was successful.

BOOL usbmc_CmdJogOn(int axis, BOOL dir, DWORD speed);

Start Jogging the axis. Controller generates trapezoidal acceleration profile based on
the preconfigured parameters and generates STEP and DIR pulses for selected axis.
Axis will continue jogging until usbmc_CmdJogOff() function is called or Stop or Estop
function is activated. All axes are independent, that is jog for any axis can be started
and stopped any time.

If the axis is already in jogging motion, new speed is applied. The axis speed will
change to this new value using acceleration that is configured for that axis.

http://www.audiohms.com/
mailto:office@audiohms.com

Audioms Automatika doo

Kragujevac, Serbia, Europe

web: www.audiohms.com

e-mail: office@audiohms.com

Page 10 of 19

USB motion controllers programming library – Documentation, August 2024

Important note: application must make sure that all other operations are finished
and that controller is in M_IDLE mode or M_JOG mode (check status packet)
before attempting to enter jog mode. it is not permitted to start jog mode while
for example controller is in M_SEGM mode where motion data is still present in
the buffer.

Parameters:

int axis – 0 based index of axis to jog, 0=X, 1=Y, etc.
BOOL dir – jog direction, 0=negative direction, 1=positive direction
DWORD speed – jog speed in Steps/Sec

Returns TRUE if operation was successful.

BOOL usbmc_CmdJogOff(int axis);

Stop jogging the specified axis. Axis will decelerate to stop.

int axis – 0 based index of axis to stop, 0=X, 1=Y, etc.

Returns TRUE if operation was successful.

BOOL usbmc_CmdSpindle(BOOL on, WORD pwm_duty=0, DWORD speed=0);

This command will set spindle state as on or off and also it is used to set pwm_duty
(used for PWM spindle motor control) and speed (used for Step&Dir spindle motor
control).
This command is not used to set spindle relay(s). Relays (if needed) are
programmed by the application using any available digital output(s).

Parameters:
BOOL on – 1=spindle on, 0=spindle off,
WORD pwm_duty – 16-bit duty cycle (0-65535) represents duty cycle 0-100% (used
only in PWM spindle mode)
DWORD speed – spindle speed in steps/sec (used only in Step&Dir spindle mode)

Returns TRUE if operation was successful.

BOOL usbmc_CmdHomeAxis(BYTE axis);

http://www.audiohms.com/
mailto:office@audiohms.com

Audioms Automatika doo

Kragujevac, Serbia, Europe

web: www.audiohms.com

e-mail: office@audiohms.com

Page 11 of 19

USB motion controllers programming library – Documentation, August 2024

Start referencing sequence for the given axis. Axis will start to move toward the home
switch using configured speed. When the switch is activated axis will move in the
opposite direction until switch is deactivated.
Simulations referencing of all axes is possible.

Important: before starting the homing sequence application should make sure
that no other operation or sequence is in progress and that controller is in
M_IDLE state.

Application can check status packet for homing operation progress. Sequence
information will indicate homing stage.

When one axis is finished homing the status packet member field homed will indicate
that in this way:

BOOL axis_homed = (homed & S_FLG_AXISHOMED);
 int axnum = (homed & 7); //number of axis

Returns TRUE if operation was successful.

BOOL usbmc_CmdProbe(double start[6], double end[6], double feedrate);

Start probing sequence move. Linear move with trapezoidal acceleration is generated
by the library and sent to the controller. Controller will continuously check Probe input
while moving and as soon as Probe input is activated it will store current axes locations
and decelerate to stop.

Application can periodically call usbmc_GetProbeResult() to query status of the
probing sequence. When this function returns PROBE_HIT, application can use
usbmc_GetProbePos() to get hit position for all axes.

Parameters:
double start[6] – x,y,z... coordinates for start point in steps,
double end[6] – x,y,z... coordinates for end point in steps,
double feedrate – feedrate in mm/s
Returns TRUE if operation was successful.

BOOL usbmc_GetProbePos(double hit_pos[6]);

Call this function to get probe hit position after successful probe move. If there was no
successful probing result this function returns FALSE.

Parameters:
double hit_pos[6] – x,y,z... coordinates on hit for all axes

http://www.audiohms.com/
mailto:office@audiohms.com

Audioms Automatika doo

Kragujevac, Serbia, Europe

web: www.audiohms.com

e-mail: office@audiohms.com

Page 12 of 19

USB motion controllers programming library – Documentation, August 2024

Returns TRUE if operation was successful.

int usbmc_GetProbeResult();

This function is used to check probing status.
It can return one of the following values as defined in ProbeState enum:

 PROBE_IDLE – no probing in progress
 PROBE_ACTIVE – probing is active
 PROBE_NOHIT – probing move finished with NO hit
 PROBE_HIT – probing move finished with successful hit

BOOL usbmc_IsProbing();

Can be used to check if probing operation is in progress.

BOOL usbmc_IsHoming();

 Can be used to check if any axis is currently homing.

void usbmc_PosResync();

Application maintains current position for axes for buffered motion that it generates but
after the motion functions that controller performs autonomously (like Jogging) or after
abrupt STOP where current position is lost and unknown, software must resync to the
current position that controller achieved.

Whether there is a need for resync is indicated by the bit in status packet member
(flags & S_FLG_SWRESYNC). After all axes finish jogging, controller will indicate that
position resync should be performed by setting this bit.

Calling this function will set current position that is maintained by the library to the one
that is indicated by the status fields axis_ticks[]
Application should do the same, that is store current values in axis_ticks[] as a current
position (or calculate from steps to mm units for example) so that any subsequent
buffered motion computation has correct starting point.

BOOL usbmc_SetupMPG(BYTE axis, double step, DWORD maxvel, BOOL enable);

http://www.audiohms.com/
mailto:office@audiohms.com

Audioms Automatika doo

Kragujevac, Serbia, Europe

web: www.audiohms.com

e-mail: office@audiohms.com

Page 13 of 19

USB motion controllers programming library – Documentation, August 2024

Setup and enable/disable hardware MPG.

Parameters:
BYTE axis – 0 based index for axis that is controlled by MPG,
double step – move step for one encoder count,
DWORD maxvel – maximum axis velocity when controlled by MPG,
BOOL enable – 1=enable or 0=disable MPG control

Returns TRUE if operation was successful.

const char *usbmc_GetFirmwareVersion();

Function returns pointer to the string that contains USB-MC controller firmware version.

Motion buffer management functions

BOOL usbmc_BufAdd(USBMC_BufSeg *p);

Add one segment (point) to the motion buffer. Application should first check if there is a
free space in the buffer by calling usbmc_BufFreeCnt().
Application is adding points to the buffer maintained by the library and not to the
controller directly. Library has motion buffer for max 4000 points. Application should
only periodically call usbmc_BufUpdate() that will do all the work for transferring data
from the library buffer via USB to the motion controller.

USBMC_BufSeg *p – pointer to the structure that has coordinates for 6 axes, also may
have additional data and commands that should be synchronized with motion stream.

Returns TRUE if operation was successful.

int usbmc_BufFreeCnt();

Function returns free space in the motion buffer. Library maintains motion buffer that
has capacity of 4000 points. Application does not have to use full buffer capacity, when
adding the data it may choose to use for example max 1000 points in the buffer in this
way:
 if(usbmc_BufFreeCnt()>3000) //if there is more than 3000 free points in the buff
 usbmc_BufAdd(&p); //add one more point

http://www.audiohms.com/
mailto:office@audiohms.com

Audioms Automatika doo

Kragujevac, Serbia, Europe

web: www.audiohms.com

e-mail: office@audiohms.com

Page 14 of 19

USB motion controllers programming library – Documentation, August 2024

void usbmc_BufClear();

Clear all data in the library motion buffer.

BOOL usbmc_BufEmpty();

Check if any data is present in the motion buffer that is maintained by the library.
Return value is TRUE if buffer is empty, FALSE otherwise.

BOOL usbmc_CmdPurge(BOOL clear=FALSE);

Execute all data left in the USB-MC controller hardware buffer if any (or clear all data).

BOOL clear – if clear==FALSE, if there is any data in the USB-MC buffer, it is released
for execution
if clear==TRUE, any data that is present in the USB-MC buffer is cleared and will not
be executed.

Returns TRUE if operation was successful.

int usbmc_BufUpdate(int max_cnt=75);

This function should be called regularly so that library can maintain buffer transfers to
the USB-MC motion controller as needed.

int max_cnt – maximum points to send at one time. As this function is called often (for
example every 25ms) the quantity of data sent per call does not have to be excessive.

void usbmc_SetBuffSize(int moves);

Can be used to set target maximum USB-MC buffer occupation that library will try to
achieve. Value smaller than maximum and default (1000) can be used so that
effectively as smaller amount of data is in the buffer the latency is also smaller. Too
small value may lead to unreliable connection and discontinuities in the motion.

int moves – maximum count of moves (6 coordinate points) that will be placed in the
controller buffer. Default and maximum value is 1000.

http://www.audiohms.com/
mailto:office@audiohms.com

Audioms Automatika doo

Kragujevac, Serbia, Europe

web: www.audiohms.com

e-mail: office@audiohms.com

Page 15 of 19

USB motion controllers programming library – Documentation, August 2024

USB-MC structures

struct USBMC_AxisCfg

//Configuration parameters for one axis

typedef struct {
 //Motor tuning
 int spu; //steps per unit
 int vel; //velocity steps/s
 int acc; //acceleration steps/s2

 BYTE slave; //master axis (for A,B or C)

 //soft limits
 int smin, smax; //min and max coordinate in steps

 //homing
 int home_speed; //in steps/s
 int home_offset;
 BYTE home_flags; //see enum HomeFlags

}USBMC_AxisCfg;

struct USBMC_SpindleConfig

typedef struct{
 BYTE spindle_motor;
 int spindle_pwmfreq;
 int spindle_pwmmin;
 int spindle_pwmmax;
} USBMC_SpindleConfig;

struct USBMC_Config

//All configuration parameters for USB-MC controller
typedef struct {
 USBMC_AxisCfg ax_cfg[7]; //7 axes configs (6 axes + spindle)
 USBMC_SpindleConfig sp_cfg; //Spindle config

 BYTE state_flags; //see enum CfgFlags

 int home_retract_speed; // steps/s

BYTE home_deref_speed; ////

http://www.audiohms.com/
mailto:office@audiohms.com

Audioms Automatika doo

Kragujevac, Serbia, Europe

web: www.audiohms.com

e-mail: office@audiohms.com

Page 16 of 19

USB motion controllers programming library – Documentation, August 2024

 BYTE enc_for_mpg; //encoder that is used for MPG (0 or 1)

} USBMC_Config;

struct USBMC_BufSeg

// One motion buffer segment, 1ms update rate

typedef struct {
 double pos[6]; //axis position in steps
 DWORD line; //this segment ID number (optional)
 BYTE ecmd:4, epin:4; //fast ext out command and pin number (optional)
 BYTE pwm_duty; //8-bit pwm duty for compensation (optional)
} USBMC_BufSeg;

struct USBMC_Signal

typedef struct {
 BYTE pin; //pin number >=1 (0=undefined)
 BYTE enable:1, inv:1; //signal enable and invert (make active low)
} USBMC_Signal;

struct USBMC_IOCfg

//Configuration parameters for input and output pins

typedef struct{

 //Output signals
 USBMC_Signal stepx, stepy, stepz, stepa, stepb, stepc, steps; //Step outputs
 USBMC_Signal dirx, diry, dirz, dira, dirb, dirc, dirs; //Dir outputs
 USBMC_Signal charge1, charge2; //Charge pump signal outputs
 USBMC_Signal ext1, ext2, ext3, ext4, ext5, ext6; //External out 1-6

 //Input signals
 USBMC_Signal homex, homey, homez, homea, homeb, homec; //home switches
 USBMC_Signal limitxp, limitxn, limityp, limityn, limitzp, limitzn; //limit switches
positive and negative
 USBMC_Signal limitap, limitan, limitbp, limitbn, limitcp, limitcn;
 USBMC_Signal index; //Spindle index input
 USBMC_Signal estop; //ESTOP input
 USBMC_Signal enc1a, enc1b; //Encoder1 A,B inputs
 USBMC_Signal enc2a, enc2b; //Encoder2 A,B inputs
 USBMC_Signal probe;

http://www.audiohms.com/
mailto:office@audiohms.com

Audioms Automatika doo

Kragujevac, Serbia, Europe

web: www.audiohms.com

e-mail: office@audiohms.com

Page 17 of 19

USB motion controllers programming library – Documentation, August 2024

 WORD debounce[16]; //debounce data for all input pins,
debounce[0]=debounce value for pin1 etc.

}USBMC_IOCfg;

struct USBMC_Status

//Motion controller complete status report
typedef struct {
 BYTE size; //size of this struct
 BYTE state; //current mode, see enum Mode values
 BYTE cur_seq; //current sequence, see enum Sequence values
 BYTE flags; //various flags, see enum StatusFlags values
 WORD inputs; //input states
 WORD outputs; //output states
 int axis_ticks[7]; //all axes positions in steps
 float spindle_rpm; //rpm detected using Index input
 WORD inbuff; //points currently in hardware buffer
 DWORD time; //timestamp when this status was created
 int encoder1_pos; //encoder1 position
 int encoder2_pos; //encoder2 position
 BYTE fault; //fault code, see enum Fault values
 BYTE homed; //signals referenced axis
 DWORD gline; //id from cur buffer segment (like prog line currently executing)
 WORD analogv; //analog input value
} USBMC_Status;

USB-MC enumerations

 //Current mode
 enum Mode{
 M_IDLE=0,
 M_JOG,
 M_SEGM,
 M_HOLD,
 M_ESTOP,
 M_SAFE,
 M_RDOWN
 };

 //Sequences
 enum Sequence{
 SQ_NONE=0,
 SQ_HOME0,

http://www.audiohms.com/
mailto:office@audiohms.com

Audioms Automatika doo

Kragujevac, Serbia, Europe

web: www.audiohms.com

e-mail: office@audiohms.com

Page 18 of 19

USB motion controllers programming library – Documentation, August 2024

 SQ_HOME1,
 SQ_HOME2,
 SQ_HOME3,
 SQ_HOME4,
 SQ_PROBE1,
 SQ_PROBE2,
 SQ_MPG
 };

 //Stop reasons
 enum Fault{
 F_NONE=0,
 F_UNK,
 F_HOMESW,
 F_LIMITSW,
 F_SOFTLIMIT,
 F_ESTOP,
 F_PROBE
 };

 enum HomeFlags{
 // Home flags
 HOME_NEG = 1,
 HOME_AUTOZERO = 2,
 };

 enum SpindleTypes{
 //Spindle types
 SPINDLE_NOMOTOR = 0,
 SPINDLE_PWM,
 SPINDLE_STEPDIR
 };

 enum EngineCmd{
 //Engine commands
 C_EXT_OUT_ON = 1,
 C_EXT_OUT_OFF = 2
 };

 enum StopModes{
 STOP_ESTOP = 1,
 STOP_DISCONNECT = 2
 };

 //cfg state FLAGS
 enum CfgFlags{
 //CHARGE flags
 CHARGE_5K = 1,
 CHARGE_ALWAYSON = 2,

http://www.audiohms.com/
mailto:office@audiohms.com

Audioms Automatika doo

Kragujevac, Serbia, Europe

web: www.audiohms.com

e-mail: office@audiohms.com

Page 19 of 19

USB motion controllers programming library – Documentation, August 2024

 //Misc
 LIMIT_OVERRIDE = 4,
 //THC_MODE = 8,
 LASER_COMP = 16,
 LASER_GRAY = 32,
 //SOFTLIMITS_SLOWZONE = 64, //unused
 HOME_UNLINK_SLAVE = 128 //=!HOME_SLAVEWMASTER
 LOW_SPEED = 256, //use 125kHz mode instead of full 250kHz
 //Step signal width is twice larger (4uS)
 };

 //Runtime state flags
 enum RuntimeFlags{
 SOFT_LIMITS = 1,
 SHUTTLE_MODE = 2,
 // OFFLINE_MODE=4
 // THC_MODE = 8
 // THC_DISABLEUPDN = 32
 // PROBE_LIMIT = 64
 };

 //Status flags
 enum StatusFlags{
 S_FLG_SWRESYNC = 1,
 S_FLG_THCON = 2,
 S_FLG_SPINDLEON = 4,
 S_FLG_THCARCOK = 8,
 S_FLG_THCUP = 16,
 S_FLG_THCDOWN = 32,
 S_FLG_THCLOCK = 64,

 S_FLG_AXISHOMED = 128,
 };

 enum ProbeState{
 PROBE_IDLE=0,
 PROBE_ACTIVE,
 PROBE_NOHIT,
 PROBE_HIT
 };

DOCUMENT REVISION:

- Ver. 1.0, August 2024, Initial version

http://www.audiohms.com/
mailto:office@audiohms.com

	USB Motion Controllers Programming Library
	Introduction
	Supported motion controllers
	Using the library
	Opening and initializing device
	Application concept example
	Working modes (states)
	Buffered motion programming
	Sequences
	Example CNC application

	USB-MC API functions reference
	Hardware communication functions
	BOOL usbmc_Open();
	void usbmc_Close();
	BOOL usbmc_Init(USBMC_Config *ucfg, USBMC_IOCfg *pcfg);
	BOOL usbmc_GetStatus(USBMC_Status *stat);
	void usbmc_Disconnect();
	BOOL usbmc_CmdStop(BYTE flags=0);
	BOOL usbmc_CmdSetOutputs(WORD out_bits, WORD flags=0, WORD zmask=0);
	BOOL usbmc_CmdJogOn(int axis, BOOL dir, DWORD speed);
	BOOL usbmc_CmdJogOff(int axis);
	BOOL usbmc_CmdSpindle(BOOL on, WORD pwm_duty=0, DWORD speed=0);
	BOOL usbmc_CmdHomeAxis(BYTE axis);
	BOOL usbmc_CmdProbe(double start[6], double end[6], double feedrate);
	BOOL usbmc_GetProbePos(double hit_pos[6]);
	int usbmc_GetProbeResult();
	BOOL usbmc_IsProbing();
	BOOL usbmc_IsHoming();
	void usbmc_PosResync();
	BOOL usbmc_SetupMPG(BYTE axis, double step, DWORD maxvel, BOOL enable);
	const char *usbmc_GetFirmwareVersion();
	BOOL usbmc_BufAdd(USBMC_BufSeg *p);
	int usbmc_BufFreeCnt();
	void usbmc_BufClear();
	BOOL usbmc_BufEmpty();
	BOOL usbmc_CmdPurge(BOOL clear=FALSE);
	int usbmc_BufUpdate(int max_cnt=75);
	void usbmc_SetBuffSize(int moves);

	USB-MC structures
	struct USBMC_AxisCfg
	struct USBMC_SpindleConfig
	struct USBMC_Config
	struct USBMC_BufSeg
	struct USBMC_Signal
	struct USBMC_IOCfg
	struct USBMC_Status

	USB-MC enumerations

